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ABSTRACT	

The SAS4A/SASSYS-1 safety analysis software is used to perform deterministic analysis 
of anticipated events as well as design-basis and beyond-design-basis accidents for advanced 
fast reactors. It plays a central role in the analysis of U.S. DOE conceptual designs, proposed 
test and demonstration reactors, and in domestic and international collaborations. 

This report summarizes the code development activities that have taken place during 
FY2017. Extensions to the void and cladding reactivity feedback models have been 
implemented, and Control System capabilities have been improved through a new virtual data 
acquisition system for plant state variables and an additional Block Signal for a variable lag 
compensator to represent reactivity feedback for novel shutdown devices. 

Current code development and maintenance needs are also summarized in three key areas: 
software quality assurance, modeling improvements, and maintenance of related tools. With 
ongoing support, SAS4A/SASSYS-1 can continue to fulfill its growing role in fast reactor 
safety analysis and help solidify DOE’s leadership role in fast reactor safety both domestically 
and in international collaborations. 
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1 Introduction	
SAS4A/SASSYS-1 is a simulation tool used to perform deterministic analysis of anticipated 
events as well as design basis and beyond design basis accidents for advanced liquid-metal-
cooled nuclear reactors. [1] With its origin as SAS1A in the late 1960s, the SAS series of codes 
has been under continuous use and development for nearly fifty years. It has been identified as a 
critical element of safety analysis capabilities for the U.S. Department of Energy. [2,3] 

Version 5.2 of SAS4A/SASSYS-1 was completed in March 2017 and released to users in mid-
May following a software quality assurance review and publication of the updated manual. [1] 
Sixteen organizations have requested and obtained the new version. The new release introduces 
an extension to the Control System module that provides access to an extensive set of core and 
core channel state variables such as fuel, cladding, coolant, and structure temperatures; coolant 
flow rates and pressures; and several other parameters. [4] 

This report summarizes the code development and update activities carried out during FY2017. 
Active programs and collaborations that use SAS4A/SASSYS-1 are summarized in Section 2. 
New features that have been developed since the release of Version 5.2 are summarized in 
Section 3, and general code improvements are summarized in Section 4. Current development 
needs are summarized in Section 5. 

2 Current	Status	

2.1 Government	Use	

Continued maintenance and improvement of the SAS4A/SASSYS-1 code system is motivated by 
the importance of its simulation capability to a number of U.S. Department of Energy programs 
as well as domestic and international collaborations. U.S. DOE activities that rely on 
SAS4A/SASSYS-1 are summarized in Table 1. 

2.2 New	License	Agreements	

During FY2017, eight new license agreements were established for SAS4A/SASSYS-1. These 
are summarized in Table 2. Globally, there are twenty-six licensed users/organizations with 
access to SAS4A/SASSYS-1 or Mini SAS. 
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Table	1:	U.S.	DOE	Research	and	Development	Activities	Using	SAS4A/SASSYS-1	
Program/Activity Description 

Test/Demo Reactor 
(Versatile Test Reactor) 

The U.S. DOE has made an assessment of advanced reactor technology 
options to provide technical context for future decisions concerning 
irradiation testing capabilities. [5] Safety analyses and licensing activities 
for a fast spectrum test reactor require the modeling capabilities of 
SAS4A/SASSYS-1. 

FFTF Benchmark The U.S. DOE is preparing benchmark specifications for the Passive 
Safety Tests (PST) carried out at the Fast Flux Test Facility between 1984 
and 1986. The most prominent tests were the loss of flow without scram 
(LOFWOS). In collaboration with PNNL, Argonne is assessing the 
benchmark specifications and preparing SAS4A/SASSYS-1 models for 
verification and validation purposes. [6] 

EBR-II IAEA 
Benchmark 

The U.S. DOE concluded a high-profile Coordinated Research Project 
with the International Atomic Energy Agency based on the Shutdown 
Heat Removal Tests conducted at EBR-II. [7] U.S. analyses for both 
protected (SHRT-17) and unprotected (SHRT-45R) loss-of-flow tests 
were completed using SAS4A/SASSYS-1. 

DOE/CEA Bilateral 
Collaboration 

An implementation agreement has been established between the U.S. DOE 
and the Commissariat à l'énergie atomique et aux énergies alternatives 
(CEA) of France for cooperation in low carbon energy technologies. One 
purpose of the agreement is to evaluate the safety performance of the 
ASTRID reactor design. DOE participates in this collaboration using the 
SAS4A/SASSYS-1 safety analysis code. 

DOE/JAEA Bilateral 
Collaboration 

The Civil Nuclear Energy Research and Development Working Group 
(CNWG) was established by the U.S.-Japan Bilateral Commission on 
Civil Nuclear Cooperation in 2012 to enhance coordination of joint 
nuclear research and development. The Japan Atomic Energy Agency 
(JAEA) and Argonne are collaborating under the CNWG to improve the 
oxide fuel severe accident modeling capabilities in SAS4A/SASSYS-1. 

DOE/CIAE Bilateral 
Collaboration 

The DOE-NE Office of International Nuclear Energy Policy and 
Cooperation has established the U.S.–China Bilateral Civil Nuclear 
Energy Cooperative Action Plan (BCNECAP) with the China Institute of 
Atomic Energy (CIAE). Joint activities under the action plan include 
model development and safety analyses of the China Experimental Fast 
Reactor using SAS4A/SASSYS-1. 

NEUP (University of 
California—Berkeley) 

The University of California at Berkeley is using SAS4A/SASSYS-1 to 
evaluate safety benefits that might be achieved with autonomous reactivity 
control devices in sodium-cooled fast reactors. 

NEUP (Kansas State 
University) 

Kansas State University is preparing experiments with liquid gallium that 
can improve the modeling of thermal stratification in SFRs. In 
collaboration, the University of Illinois will develop improved 
stratification models that could be incorporated into SAS4A/SASSYS-1. 

NEUP (University of 
Wisconsin) 

The University of Wisconsin is preparing experiments with liquid sodium 
that can improve the modeling of thermal stratification in SFRs. In 
collaboration, Virginia Commonwealth University is working to develop 
improved models that could be incorporated into SAS4A/SASSYS-1. 
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Table	2:	SAS	License	Agreements	Established	during	FY2017	
Organization Code Purpose 
Japan Atomic Energy Agency SAS4A/SASSYS-1 CNWG Bilateral 
U.S. Nuclear Regulatory Commission SAS4A/SASSYS-1 Government Use 
GE-Hitachi Nuclear Energy Mini SAS ARC-100 Support 
Westinghouse Electric Company SAS4A/SASSYS-1 LFR Concept 
Ulsan National Institute of Science and 
Technology (UNIST) 

SAS4A/SASSYS-1 Academic Use/ 
PG-SFR 

CITON — Center of Technology and 
Engineering for Nuclear Projects 

Mini SAS EU ALFRED Project 

Illinois Rocstar, LLC SAS4A/SASSYS-1 SBIR Project 
Idaho National Laboratory SAS4A/SASSYS-1 Government Use 

3 New	Features	
New features have been implemented in SAS4A/SASSYS-1 to account for higher-order 

reactivity feedback effects, to implement a plant-wide virtual data acquisition system, and to 
update the Control System to implement a variable lag compensator. These developments have 
been completed, but they have not passed final software quality assurance reviews and will be 
part of a future release. 

3.1 Higher	Order	Void	Reactivity	Feedback	
The existing reactivity feedback models in SAS4A/SASSYS-1 assume that all feedback 
mechanisms are linear. Previous studies have shown that for significant sodium voiding, non-
linear voiding effects can increase average core outlet temperatures by about 25°C compared to 
linear feedback assumptions. [8] Recent studies on LFR systems show that the linear feedback 
assumption is acceptable up to about 10% void. [9] Beyond that, non-linear effects start to 
become important. 
In typical U.S. SFR designs, it is assumed that sodium boiling can be practically eliminated, thus 
the capability to model non-linear void effects may not be essential. However, fuel pin failures 
can inject fission gases into a coolant channel [10] and introduce an effect similar to sodium 
boiling. Since it is straightforward to introduce a non-linear component to the feedback models, 
it is prudent to do so. 

In SAS4A/SASSYS-1, void reactivity feedback is determined from changes in the coolant mass 
distributions in every channel: 

𝜌void = 𝜌void
',) 𝑚cool

',) 0 − 𝑚cool
',) 𝑡

)'

	

where 𝜌void
',)  is the user-defined void reactivity worth per kilogram (VOIDRA) in axial node 𝑗 of 

channel 𝑖 and 𝑚cool is the coolant mass. The above equation applies to coolant density changes 
introduced by thermal expansion, boiling, or fission gas injection. 
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As shown above, the current model assumes that void reactivity is linear with changes in the 
coolant density. Non-linear effects are not considered. In the extended model, second-order 
effects are now considered. For example, if the change in the void mass distribution is defined as 

𝛥𝑣',) 𝑡 = 𝑚cool
',) 0 − 𝑚cool

',) 𝑡 	

then the extended model can be written as 

𝜌void = 𝜌void
',) 𝛥𝑣',) 𝑡 + 𝜌void,2

',) 𝛥𝑣',) 𝑡 7

)'

	

where 𝜌void,2
',)  is a new user-defined input (VOIDRA2) with units of void reactivity per kilogram-

squared. In the absence of new input, the code will assume 𝜌void,2
',) = 0 and the current model is 

maintained. The extended implementation currently only considers coolant density changes. The 
treatment of boiling or fission-gas injection requires additional updates to the severe accident 
models in SAS4A/SASSYS-1. 

To further improve usability, values for void reactivity feedback can now be defined on an 
arbitrary mesh independent of the SAS4A/SASSYS-1 channel mesh. This provides much-needed 
flexibility in providing reactivity feedback input from perturbation theory results that may have 
been computed on a different mesh. The new input is represented by a free-formatted, arbitrary-
length, channel-dependent input table: 

TABLE <n> “Reactivity” 
 LENGTH VOIDRA VOIDRA2 
 𝛥𝑧9  𝜌void

',9   𝜌void,2
',9  

 𝛥𝑧7  𝜌void
',7   𝜌void,2

',7  
 … 
 𝛥𝑧:  𝜌void

',:   𝜌void,2
',:  

END 

The LENGTH column is optional. If not provided, SAS4A/SASSYS-1 will assume that the 
reactivity feedback values correspond to the axial channel mesh. Otherwise, any level of axial 
detail may be specified for the reactivity feedback coefficients. 

3.2 Clad	Reactivity	Feedback	
In SAS4A/SASSYS-1, clad reactivity feedback is determined from changes in the clad mass 
distributions in every channel: 

𝜌clad = 𝜌clad
',) 𝑚clad

',) 𝑡 − 𝑚clad
',) 0

)'

	

where 𝜌clad
',)  is the user-defined clad reactivity worth per kilogram (CLADRA) in axial node 𝑗 of 

channel 𝑖 and 𝑚clad is the clad mass. The above equation applies to both fuel-pin axial expansion 
and clad relocation due to failure. 
As shown above, the current model assumes that clad reactivity is linear with changes in the 
mass distribution. Non-linear effects are not considered. In the extended model, second-order 
effects are now considered. For example, if the change in the clad mass distribution is defined as 
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𝛥𝑚clad
',) 𝑡 = 𝑚clad

',) 𝑡 − 𝑚clad
',) 0 	

then the extended model can be written as 

𝜌clad = 𝜌clad
',) 𝛥𝑚clad

',) 𝑡 + 𝜌clad,2
',) 𝛥𝑚clad

',) 𝑡
7

)'

	

where 𝜌clad,2
',)  is a new user-defined input (CLADRA2) with appropriate units. In the absence of new 

input, the code will assume 𝜌clad,2
',) = 0 and the current model is maintained. The extended model 

only considers cladding axial expansion. Treatment of clad melting and relocation requires 
additional updates to the severe accident models. 

Like the void reactivity model, the new model allows the values for clad reactivity to be defined 
on an arbitrary mesh. The new reactivity table can include values for CLADRA and CLADRA2: 

TABLE <n> “Reactivity” 
 LENGTH VOIDRA VOIDRA2 CLADRA CLADRA2 
 𝛥𝑧9  …  …  𝜌clad

',9   𝜌clad,2
',9  

 𝛥𝑧7  …  …  𝜌clad
',7   𝜌clad,2

',7  
 … 
 𝛥𝑧<  …  …  𝜌clad

',:   𝜌clad,2
',:  

END 

The LENGTH column is optional. If not provided, SAS4A/SASSYS-1 will assume that the 
reactivity feedback values correspond to the axial channel mesh. 

3.3 Plant	Virtual	Data	Acquisition	System	

In SAS4A/SASSYS-1, the Control System refers to the module that simulates the response of 
a series of mathematical and logical operations performed on zero or more Input Signals and 
Demand Signals, usually with the intent of manipulating one or more Control Signals. 
TerraPower sponsored work to develop a virtual data acquisition system for core state variables 
(Input Signals). [4] The resulting new Control System module is built around object-oriented 
constructs such as class inheritance and polymorphism and is a near complete rewrite of the 
legacy implementation. This allows the Control System to be written in terms of a generic data 
acquisition system and extension to new signal inputs is straightforward. In FY2017, the virtual 
data acquisition system model was extended to include PRIMAR-4 (whole plant) Input Signals 
such as piping flow rates, coolant and wall temperatures, coolant and cover gas pressures, and 
pump speeds. 

The extension is implemented in the context of the virtual data acquisition system that defines an 
abstract interface for accessing arbitrary plant state variables. The Control System uses a builder 
object (an extension of the SAS_BaseDASBuilder class) to create sensor objects (extensions of 
the SAS_BaseDASSensor class). The Control System uses the sensor objects to access PRIMAR-
4 state variables. Different modules can use the same builder to create PRIMAR-4 sensors, but 
the sensors are never maintained in a centralized container. The module that requests the sensor 
is responsible for retaining a reference to the sensor object, can access its value through an 
abstract function interface, and is responsible for deallocating the sensor when it is done using it.  
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The concept of a DAS Sensor is encapsulated as the abstract base class SAS_BaseDASSensor 
with the following interface: 

DAS Sensor Method Description 
• Init(sInfo,sData,scale,offset) Designated initializer. Calls InitSelf(sInfo,sData). 

All parameters are optional. 
• GetValue() Returns scaled value of raw sensor. 
• SetScale(scale) Sets sensor scaling parameter. 
• SetOffset(offset) Sets sensor offset parameter. 
+ InitSelf(sInfo,sData) { } Initializes instance of a specific sensor.  

All parameters are optional. 
+ RawValue() = 0 Returns raw sensor value. Must be overridden in 

explicit implementations. 

Procedure interfaces preceded by a bullet (•) may not be overridden. Explicit extensions of the 
abstract base class must override the RawValue method to implement the code needed to evaluate 
and return the value corresponding to a specific PRIMAR-4 state variable. The Control System, 
or other modules that use the sensor, calls GetValue() to obtain the current sensor value. This 
can be done through a reference to the abstract base class, so the Control System never needs to 
know the explicit implementation.  

The inclusion of optional scale and offset parameters support simple linear transformations of the 
raw sensor data. If not defined, scale = 1 and offset = 0. The linear transformation has the 
following form: 

GetValue = scale×RawValue + offset	
A simple example of a transformation is one that converts an absolute temperature from Kelvin 
to Celsius, where scale = 1.0 and offset = -273.15. 

In order to be used, sensors are first allocated and initialized. This is done by a DAS Builder, 
which is represented by the abstract base class SAS_BaseDASBuilder with the following 
interface: 

DAS Builder Method Description 
+ NewSensor(sType,sInfo,sData, 

 scale,offset) = 0 
Signal construction function. sType is required, 
other parameters are optional. 

Explicit extensions of the abstract base class must override the NewSensor method to allocate 
and initialize a new sensor. The explicit implementation uses the sType parameter to identify the 
sensor type to allocate. The remaining parameters are used to initialize the newly allocated 
sensor by calling Init(sInfo,sData,scale,offset) for the sensor. Code modules refer to an 
explicit builder through a reference to the base class and never need to know how the builder is 
implemented. 

The Control System accesses PRIMAR-4 state variables through the abstract interface described 
above. Specifically, the SAS_SYSDASBuilder class extends the SAS_BaseDASBuilder abstract 
class to implement the functionality needed for the NewSensor method. The NewSensor method, 
in turn, generates one of many possible SAS_SYSDASSensor subclasses that reference PRIMAR-
4 state variables, where SAS_SYSDASSensor subclasses are extensions of the abstract 
SAS_BaseDASSensor class. The subclasses of SAS_SYSDASSensor that have been implemented 
are summarized in Table 3. 
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Table	3:	Explicit	SAS_SYSDASSensor	Subclasses	
iSig Subclass Description 
-74 NormalizedDecayPower Normalized Decay Power 
-73 NormalizedFissionPower Normalized Fission Power 
-72 NormalizedTotalPower Normalized Total Power 
-71 CoreChannelBCTemperature Core Channel Boundary Condition Temperature 
-70 n/a (undefined) 
-69 LiquidElementTemperature Liquid Element Temperature 
-68 TGNodeWallTemperature Temperature Group Node Wall Temperature 
-67 TGNodeLiquidTemperature Temperature Group Node Liquid Temperature 
-66 CoreChannelFlowRate Core Channel Flow Rate 
-65 PumpSpeed Pump Speed 
-64 LSTemperature Liquid Segment Temperature 
-63 UnknownFRNDF3 FRNDF3 
-62 CVCoverGasTemperature Compressible Volume Cover Gas Temperature 
-61 CVCoverGasMass Compressible Volume Cover Gas Mass 
-60 CVCoverGasPressure Compressible Volume Cover Gas Pressure 
-59 CVWallTemperature Compressible Volume Wall Temperature 
-58 CVLiquidDensity Compressible Volume Liquid Density 
-57 CVLiquidTemperature Compressible Volume Liquid Temperature 
-56 PumpHead Pump Head 
-55 SubintervalStartTime Subinterval Start Time 
-54 CVCoverGasVolume Compressible Volume Cover Gas Volume 
-53 CVLiquidMass Compressible Volume Liquid Mass 
-52 CVInterfaceElevation Compressible Volume Interface Elevation 
-51 LSFlowRate Liquid Segment Flow Rate 
-50 CVLiquidPressure Compressible Volume Liquid Pressure 

 

During the transient simulation, the Control System simply calls the GetValue() method of each 
sensor to sample its state. The association between signal numbers (iSig) and subclasses is 
maintained by the parameter array SYSDASConfig with the help of type identifiers in the module 
SAS_SYSDASTypes. 

In the past, adding new “sensors” required modifications to several inter-dependent Control 
System routines and code maintenance was challenging. Now, the concept of a sensor is separate 
from the implementation of the Control System. If a new PRIMAR-4 sensor needs to be defined, 
only a few lines of code need to be added: 

1. Create a new subclass of SAS_SYSDASSensor that references the additional PRIMAR-4 
state variable. 

2. Update the enumerations in the module SAS_SYSDASTypes to identify the new subclass. 
3. Update the NewSensor method of the SAS_SYSDASBuilder class to recognize and 

allocate the new SAS_SYSDASSensor type. 
In addition, for the new sensor to be recognized by the control system, 

4. Update the parameter array SYSDASConfig to associate a new signal number with the 
new sensor type. 
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3.4 Control	System	Extension	

As described above, the Control System performs a series of mathematical and logical operations 
on zero or more Input Signals and Demand Signals with the intent of manipulating one or more 
Control Signals. In response to needs identified by a Nuclear Energy University Partnership 
project, new mathematical operations were required to represent the reactivity feedback 
characteristics of an Autonomous Reactivity Control device. [11]  

The behavior of an ARC device can be represented by a variable lag compensator. A variable 
lag compensator is similar to a lag compensator except that the delay time parameter can vary 
during the Control System simulation. An equation that expresses this behavior is 

𝑦 𝑡 + 𝜏 𝑡
𝑑𝑦
𝑑𝑡 = 𝑢 𝑡 	

where 

 𝑢 𝑡  = input driving function 

 𝜏 𝑡  = delay (lag) 

 𝑦 𝑡  = output function result 
Assuming that the lag time is always positive, a solution to the above equation is 

𝑦 𝑡 = 𝑦K𝑒
M NOP

Q O
R
S + 𝑒M

NOP
Q O

R
RS

𝑢 𝑡T

𝜏 𝑡T 𝑒
NOPP
Q OPP

RP
RS 𝑑𝑡T

O

K
	

where 𝑦K = 𝑦 0  and 𝑡K is an arbitrary integration constant. 
The complexity of the above solution can be simplified if we assume the input driving function 
and delay function are linear functions of time: 𝑢 𝑡 = 𝑢K + 𝑢T𝑡 and 𝜏 𝑡 = 𝜏K + 𝜏T𝑡, 
respectively. With this assumption, the solution becomes 

𝑦 𝑡 = 𝑦K 1 +
𝜏T

𝜏K
𝑡

M9 QP

+ 𝑢K 1 − 1 +
𝜏T

𝜏K
𝑡

M9 QP

+
𝑢T

1 + 𝜏T 𝑡 − 𝜏K 1 − 1 +
𝜏T

𝜏K
𝑡

M9 QP

	

In the limit that 𝜏T → 0, we arrive at the solution for constant 𝜏 during the time interval: 

𝑦 𝑡 = 𝑦K𝑒MO QS + 𝑢K 1 − 𝑒MO QS + 𝑢T 𝑡 − 𝜏K 1 − 𝑒MO QS 	

The analytic solution for the variable lag compensator can be used to solve for the value of 𝑦9 =
𝑦 𝑡K + 𝛥𝑡  at the end of a Control System sub-interval (time step) given the initial value 𝑦K =
𝑦 𝑡K . Knowing the lag time at the beginning of the time step, 𝜏K, and the input driving functions 
at the beginning and end of the time step, 𝑢K = 𝑢 𝑡K  and 𝑢9 = 𝑢 𝑡K + 𝛥𝑡 , respectively, then 
the solution for 𝑦9 at the end of the time step is 

𝑦9 = 𝑦K𝑒MW + 𝑢K 1 − 𝑒MW + 𝑢9 − 𝑢K 1 −
1 − 𝑒MW

𝛿 	

where 𝛿 = 𝛥𝑡 𝜏K is a dimensionless time step size. Because this solution is prone to numerical 
round-off errors, expansions for the exponential function are used: 
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𝑒MW = 1 − 𝛿 +
𝛿7

2 −
𝛿Y

6 + 𝑂 𝛿\ 	

and 

1 − 𝑒MW

𝛿 = 1 −
𝛿
2 +

𝛿7

6 −
𝛿Y

24 + 𝑂 𝛿\ 	

Using these expansions, the solution is written as 

𝑦9 = 𝑦K 1 − 𝛿 +
𝛿7

2 + 𝑢K
𝛿
2 −

𝛿7

3 + 𝑢9
𝛿
2 −

𝛿7

6 + 𝑂 𝛿Y 	

To minimize numerical round-off errors in the code, the following form is used: 

𝑦9 ≈ 𝑦K 1 − 𝛿 1 − 𝛿
1
2 + 𝑢K 𝛿

1
2 − 𝛿

1
3 + 𝑢9 𝛿

1
2 − 𝛿

1
6 	

which is second-order accurate in 𝛿. This form also avoids the need to make expensive 
exponential function evaluations. 
A variable lag compensator is identified in the Control System input as signal type ITYPE = 23. 
It requires two input signals to define the time-dependent functions 𝑢 𝑡  and 𝜏 𝑡 . These are 
identified by the input parameters J1 and J2, respectively. Input for the variable lag compensator 
is summarized in Table 4. 

Table	4:	Input	Requirements	for	a	Variable	Lag	Compensator	
Input Description 
ISIG User-defined signal number 
ITYPE = 23 Variable Lag Compensator type 
J1 Signal # of driving function, 𝑢(𝑡) 
J2 Signal # of delay time, 𝜏 𝑡  
F1 Multiplier for driving function 

default: 1 
F2 (unused) 
F3 (unused) 
F4 Steady-state initial condition, 𝑦 0  

default: 𝑦 0 = 𝑢 0  
F5 Zero-crossing parameter (F5 > 0) 

 
Additional input includes two optional parameters, F1 and F4, and one required parameter, F5. If 
the optional parameters are blank or zero, defaults will be applied as indicated in the table. For 
example, if F1 is non-zero, then the actual driving function will include a multiplier: 

𝑢 𝑡 = F1×sig J1 	
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Likewise, if F4 is non-zero, it is used to define the initial steady-state condition as 𝑦 0 = F4. 
Otherwise, the steady-state solution to the equation is 𝑦 0 = 𝑢 0 . 
The zero-crossing parameter, F5, is used in the same manner as with other Control System 
signals to stabilize convergence testing when the solution for 𝑦 𝑡  is near zero. The normalized 
error is approximated as follows to avoid divide-by-zero errors: 

error =
𝛥𝑦
𝑦 ≅

𝛥𝑦
𝑦 + F5

	

Therefore, users can select a value for F5 that is small enough to ensure convergence when 𝑦 𝑡  
is small, but large enough to avoid excessive iterations when small values for 𝑦 𝑡  do not have a 
significant impact on the overall solution. 

Like the lag compensator, the variable lag compensator shifts both the phase and amplitude of 
the input signal 𝑢 𝑡 . However, the phase and amplitude vary as a function of time through the 
additional input for 𝜏 𝑡 . To demonstrate this, consider the following conditions: 

𝑢 𝑡 = sin
2𝜋
5 𝑡 	

𝜏 𝑡 = 1.9 sin
2𝜋
50 𝑡 + 2	

𝑦 0 = 2	
These can be represented in the Control System input as follows: 

 
INCONT     5 
# Time: t 
    1  -55    0    0       0.0       0.0       0.0       0.0       0.0  
# Driving Signal: Sin(2πt/5) 
   11   22    1    0       1.0 1.2566370       0.0       0.0 
# Lag Time Variation: Sin(2πt/50) 
   12   22    1    0       1.0 .12566370       0.0       0.0 
# Constant: 2 
   13   21    0    0       2.0       0.0       0.0       0.0       0.0 
# Lag Time: 1.9Sin(2πt/50) + 2 
   17    1   12   13       1.9       1.0       1.0       0.0       0.0 
# Variable Lag Compensator(11,17) 
#     ITYPE  J1   J2        F1                            F4        F5 
   18   23   11   17       1.0       0.0       0.0       2.0     0.001 
  999    1 
  8001     2  0.00000001  0.00000001 
END 

 
Using the above Listing in a SAS4A/SASSYS-1 input file would produce the Control System 
output shown in Figure 1. 
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Figure 1: Results of Applying a Variable Lag Compensator to an Incoming Sine Function 

Note that because F4 = 2, the variable lag compensator starts at the non-equilibrium value 
𝑦 0 = 2. As the lag time 𝜏 𝑡  rises and falls, the delay in the input signal becomes longer and 
shorter, respectively. Similarly, the amplitude of the output decreases and increases. 

4 Other	Code	Improvements	
Numerous additional code improvements have been made during FY2017. These are 

summarized briefly in the following sections. 

4.1 Documentation	

With the release of SAS4A/SASSYS-1 version 5.2, the code manual has also been updated. The 
latest release is 

T. H. Fanning, A. J. Brunett, and T. Sumner, eds., The SAS4A/SASSYS-1 Safety 
Analysis Code System, ANL/NE-16/19, Nuclear Engineering Division, Argonne 
National Laboratory, March 31, 2017. 

The manual consists of multiple documents spanning 2200+ pages that detail user input, 
theoretical considerations, and implementation details. The sizes of the documents have become 
unmanageable as traditional office-type documents. A small activity has been initiated to convert 
the documents to a markup format that is more amenable to frequent updates and edits that can 
be tracked in an SQA environment. 
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4.2 Compliance	with	Fortran	2003	Standards	

Although the history of SAS4A/SASSYS-1 spans nearly five decades, it has undergone 
continuous updates to maintain compliance with software programming standards. The most 
recent update brings the source code into compliance with Fortran 2003 standards. Obsolete code 
that has been eliminated includes 

• 73 arithmetic “if” statements 
• 181 computed “go to” statements 
• 4,141 DO loops without proper “end do” termination 
• 350 invalid edit descriptors 

Non-standard code that will continue to be accepted includes the use of tab characters (for 
indenting) and source code line lengths that extend beyond 132 characters. These extensions 
support code refactoring as the source undergoes continued modernization. 

4.3 Cross-Platform	Consistency	

Code testing and validation is always a challenge. This challenge is made even more difficult 
when software is maintained for multiple platforms, as is the case with SAS4A/SASSYS-1 
which supports macOS, Linux, and Windows systems. With careful tuning of compiler options, 
SAS4A/SASSYS-1 now produces bit-identical results on all three platforms when using the Intel 
Fortran compiler. This is true even for optimized code. Testing on all three platforms now uses 
the same set of reference solutions, which significantly increases the value of regression testing. 

4.4 Support	for	64-bit	Compilation	

SAS4A/SASSYS-1 can now be compiled either as a 32-bit or 64-bit application. Compiling as a 
32-bit executable is still the default because it is required when coupling with the spatial kinetics 
capabilities of DIF3D-K. Compiling as a 64-bit application allows for larger problem domains 
and memory usage, although it is not a critical need. The main motivation for compiling in 64-bit 
was to identify and eliminate memory access bugs. Both 32- and 64-bit versions now produce 
bit-identical results and can be tested against the same reference solutions. 

One issue remains, however. In extensive testing, a round-off error was identified in the Intel 
Fortran libraries. The problem appears in the 32-bit I/O libraries that ship with the Linux and 
macOS distributions for Intel Fortran. It does not appear in the 32-bit libraries for Windows or 
the 64-bit libraries for any platform. This issue has been reported to Intel. 

4.5 Bug	Fixes	
A number of issues have been identified and corrected since the release of SAS4A/SASSYS-1 
Version 5.2. These corrections will be incorporated into the forthcoming 5.2.1 revision. 
Corrected issues include the following: 

• RESTART files are no longer generated if NSTEP = 0, consistent with documentation. 
• Eliminated a potential divide-by-zero error when the Young's Modulus for cladding and 

fuel are not provided in input. 
• Corrected the declaration of a local variable used in debug print statements. 
• Corrected an issue where the input parameter IPRION was not treated consistently when 

PRIMAR-4 was not being used. 
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• Eliminated a potential floating-point exception on Windows when debug prints are 
enabled. 

• Eliminated a potential divide-by-zero error when predicting the time-step cutback in 
PRIMAR-4 if core channel flow rates are not changing. 

• Corrected an issue where a non-zero value for IFLOW would impact PRIMAR-4 
calculations. 

• Eliminated a rare divide-by-zero error on Windows caused by poor CPU timing 
resolution. 

5 Current	Development	Needs	
Development needs have been identified in three broad areas. First, the software quality 

assurance program must be maintained in order for SAS4A/SASSYS-1 to remain viable as a 
safety analysis tool for nuclear facilities. Second, gaps in modeling capabilities exist that should 
be addressed on a prioritized basis. Third, SAS4A/SASSYS-1 relies on input from related design 
and analysis tools. Some of these tools are only maintained on an ad-hoc basis. 

5.1 Software	Quality	Assurance	
Code maintenance activities have shifted into a more formal software quality assurance Program 
that has been developed under the Regulatory Technology Development Plan. [12,13] Source 
code and documentation are maintained within a software configuration management system and 
formal code changes are tracked in an electronic ticket system according to SQA procedures.  
These activities are vital for any software that will be used to assess the safety of a nuclear 
installation, but they do require resources to maintain. Feedback from other DOE, NRC, and 
industrial organizations suggest that SQA Program compliance requires between 30–60% of 
software maintenance resources. The goal of the SAS4A/SASSYS-1 SQA Program is to 
minimize, to the extent possible, this overhead. For example, the current Program does not intend 
to achieve NQA-1 compliance [14,15] as this may be better addressed by a commercial-grade 
dedication process pursued by domestic industry. On the other hand, if DOE intends to authorize 
construction of a fast spectrum test reactor, then safety analysis codes must comply with DOE 
quality assurance requirements set forth in DOE Order 414.1D. 
In addition to Program maintenance and compliance, additional resources are needed to improve 
verification and regression testing, code coverage analyses, validation, and documentation. An 
evaluation of the current test suite reveals that there are important code-coverage gaps that need 
to be addressed even though the regression test suite has expanded considerably in the past year. 
Translation of the code documentation into a more manageable file format is also taking place, 
but at a slow pace. 
Adherence to an SQA program will help ensure that software development and documentation 
activities are carried out in a way to ensure that SAS4A/SASSYS-1 can be used for potential 
license or authorization of a fast spectrum reactor. 

5.2 Modeling	Improvements	

Improvements to SAS4A/SASSYS-1 not only includes the implementation of new capabilities 
required to support safety analyses, but source code changes required to improve usability, 
performance, scalability, and maintenance. The latter is an ongoing process that is needed to 
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maintain existing capabilities as programming languages and computational resources evolve. 
The former is based on prioritization of identified gaps in modeling capabilities. Some of these 
gaps, based on current R&D activities, include the following: 
Metal Fuel Transient Modeling: The Korea Atomic Energy Research Institute (KAERI) has 
invested considerable resources in developing metallic fuel accident modeling capabilities in the 
context of SAS4A/SASSYS-1. These models are directly relevant to U.S. SFR designs. 
Currently, however, these models exist in a separate branch of code development. Considerable 
effort will be needed to reintegrate the updates into the official SAS4A/SASSYS-1 code. 

Oxide Fuel Transient Modeling: International organizations, such as CEA and JAEA, have 
interest in oxide fuel severe accident modeling. SAS4A/SASSYS-1 already has a strong oxide 
fuel modeling capability, and JAEA is working with Argonne to integrate updates to those 
models into SAS4A/SASSYS-1. It is important this work continues so that DOE maintains its 
leadership role in international fast reactor safety. 
Integration of Higher-Order Feedback Models: The feedback models described in Section 3.1 
were designed to simplify the integration of the metal fuel transient models being developed by 
KAERI. The feedback models need to be integrated into the severe accident models in 
SAS4A/SASSYS-1. 
Integration with NEAMS Tools: A number of developments being pursued by the Nuclear 
Energy Advanced Modeling and Simulation (NEAMS) Program would be of benefit to 
SAS4A/SASSYS-1. Efforts to integrate the System Analysis Module (SAM) should continue, 
and the potential for NEAMS Workbench to improve usability and to simplify preparation of 
user input should be evaluated. 

5.3 Support	for	Related	Tools	
Although SAS4A/SASSYS-1 is a critical component for fast reactor safety analysis, it is not the 
only software tool required for design, safety analysis, and licensing. In 1977 the U.S. DOE 
published a “compendium” of computer codes for the safety analysis of fast reactors. [16] At the 
time, more than 130 codes were identified, although many were R&D tools that may not be 
essential for authorization or licensing. Forty years since its publication, most of the identified 
codes no longer exist. 

It is beyond the scope of this report to identify all of the computer codes that may be required for 
fast reactor design and analysis. Within the scope of design-basis and beyond-design-basis safety 
analysis, however, key tools are required to provide the following: 

• Fast spectrum cross-section processing 
• Flux and power distributions 
• Gamma transport and heating 
• Fuel cycle and depletion analysis 
• Flow orifice design and optimization 
• Kinetics and perturbation theory analysis 
• Source term and radionuclide release 

Computer codes that provide these capabilities exist, but support and maintenance is ad-hoc in 
most cases. Formal support and SQA programs need to be established for these and other tools 
required for design and safety analysis. 
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6 Summary	
Over the last few years, the SAS4A/SASSYS-1 safety analysis code has undergone 

significant revisions to modernize code structure and data management. [17,18,19,4] With 
continued interest in advanced non-LWR reactors, there is also growing interest in applying 
SAS4A/SASSYS-1 to a number of SFR and LFR concepts. In total, there are twenty-six license 
agreements in place, with eight of them established in the current fiscal year. The safety analysis 
code continues to be of significant importance to DOE sponsored activities as well as to 
domestic and international collaborations. SAS4A/SASSYS-1 Version 5.2 was completed in 
March 2017 and released in May. 
Development activities that have been completed include extensions to the void and cladding 
reactivity feedback models, improved Control System capabilities through a new virtual data 
acquisition system for plant state variables, and an additional Block Signal for a variable lag 
compensator to represent reactivity feedback for novel shutdown devices. 
Current code development and maintenance needs are also summarized in three key areas: 
software quality assurance, modeling improvements, and maintenance of related tools. With 
ongoing support, SAS4A/SASSYS-1 can continue to fulfill its growing role in fast reactor safety 
analysis and help solidify DOE’s leadership role in fast reactor safety both domestically and in 
international collaborations. 
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